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I. Phys. A Math. Gen. 26 (1993) 6991-7002. Printed in the UK 

Duality for multiparametric quantum GL(n) 

V K Dobrevtt and Preeti Parashars 
International Centre for Theoretical Physics, PO Box 586, 34100 Trieste, Italy 

Received 4 May 1993 

Abstract. We show that the Hopf algebra U", dual to the multiparameter matrix quantum group 
GL,,(n) may be realized a la Sudbery, i.e. tangent vectors at the identity. Funhermore, we 
give the Cartan-Weyl basis of U", and show that this is consistent wiih the duality. We show 
that as a commutation algebra U,, Z U.(sl(n, 0) @ U.(Z), where € is one-dimensional and 
U.(Z) is a centraI algebra in U,,q, However, as a co-algebra U., cannot be split in this way 
m d  depends on all parameters. 

1. Introduction 

Quantum groups first appeared as quantum algebras, i.e. as one-parmeter deformations of 
the universal enveloping algebras Uq(G) of complex simple Lie algebras 8, in the study 
of the algebraic aspects of quantum integrable systems in [l-61. Then quantum algebras 
related to trigonometric solutions of the quantum Yang-Baxter equation were axiomatically 
introduced as (pseudo) quasi-triangular Hopf algebras in [7-lo]. Other approaches to 
quantum groups, in which the objects may be called quantum matrix groups and are 
Hopf algebras in duality to the quantum algebras, were developed in 111-151. Later, the 
matrix quantum group approaches were pursued further, in particular finding consistent 
multiparametric deformations in [16-28]. 

In the present paper we find the dual algebra to the multiparameter matrix quantum 
group GL,,(n) which is the (n(n - 1)/2 + 1)-parameter deformation of GL(n) given 
in [17.22]. We partially use the approach of [29] to postulate the pairings between the 
generating elements of the two algebras. We show that the algebra U,, dual as a Hopf 
algebra to the multiparametlic deformation GL&) may be realized a la Sudbery [29]. 
Furthermore, we give the Cartan-Weyl basis of Uun and show that this is consistent with 
Sudbery duality. The algebra Uu, contains a central Hopf algebra Uu(2), where 2 is one- 
dimensional. Moreover, as a commutation algebra we have &, "= UW(d(n,  C)) @ U a ( 2 ) .  
However, as a co-algebra U., kannot be split in this'way and depends on all parameters. 

2. Dual algebra of multiparametric deformation of GL(n) 

In [12,13] Manin has considered a family of quantum groups, deformations of the algebra 
of polynomial functions on GL(n) , depending on n(n - 1)/2 parameters. Later, different 
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multiparameter deformations were found in [16-28]. The maximal number of parameters 
for GL(n) is N = n(n - 1)/2 + 1 [17,22]. Following [I71 we denote these N parameters 
by U and q t j ,  1 < i -z j < n,  and also for shortness by the pair U, q. 

Let us consider an n x n quantum matrix M with non-commuting matrix elements aij, 
1 6 i, j 6 n. The maviw~qugtum group GL&) is generated by the manix elements ajj 

with the following commutation relations [17,22]: 

V K Dobrev et a1 

This algebra has determinant D given by [22,17]: 

where summations are over all permutations p of (1, . . . , n) and the quantum signatures are 

The determinant obeys [17,22]: 

8d('D) = 'D 8 &d(z)) = 1 .  (5) 

The determinant is almost central, i.e. it q-commutes with the elements aij [22]: 

Further, if D # 0 one extends the algebra by an element which obeys [17,22]: 

DD-1 = D-% = la. (7) 
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Note that for qij = u for all i ,  j then the element D is central and it is possible that 
= D-' = la. 

Next one defines the left and right quantum cofactor matrices Aij and Aij 1171: 

where ui and U! denote the cyclic permutations: J 

U; = [i, . . , , 1) U! J = (j, ..., n] (9) 

and the notation 2 indicates that x is to be omitted. Now one can show that [22,17]: 

Zaj jAk j  = CA: ia jk  = djkD (10) 
i i 

and obtain the left and right inverse [22,17]: 

M-' = D-'A' = AD-'. (11) 

Thus, one can introduce the antipode in GL,,(n) 117,221: 

(12) y ~ ( a i j )  = D-'A;; = AjiD- 1 . 

We are looking for the dual algebra to GL,,(n). Let us recall that two bialgehras U, d 
are said to be in duality if there exists a doubly nowdegenerate bilinear form 

( , ) : U x d + C  ( , ) : ( u , a ) w ( u , a )  U E U ,  a c d  (13) 

(4 ab) (8U(U), a @ b) ( U U ,  a) = (U @ U ,  8d(U)) (14) 

( ~ U I  a) = EA@) ( U ,  Id) = dU). (15) 

such that, for U ,  U E U ,  a, b E A, 

Two Hopf algebras U, A are said to be in duality if they a e  in duality as bialgebras and if 

(YU(u), a) = Yd(a)); (16) 

It is enough to define the pairing (13) between the generating elements of the two 
algebras. The pairing between any other elements of U, d then follows from relations (14), 
(15) and the standard bilinear form inherited by the tensor product. 

However, we do not know the dual algebra completely. Then we need to know the 
action of the algebra Ua, dual to GL,,(n) on every element of CL&). The basis of 
GL,,(n) consists of monomials 

f = ( ~ 1 1 ) ' ~ .  . . (a..)k~(alz)ml~. . . (a,-l,,)m"-l.*(a,,,_,)nn.l-l . . . (aZl)"zl (17) 
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where ki, mij, ntj E Z+ and we have used the so-called normal ordering of the elements 
aij. Namely, we first put the elements ai:; then we put the elements aij with i < j in 
lexicographic order, i.e. if i < k then aij (i < j )  is before aki  (k c 1 )  and a,{ (t < i) is 
before a,t; finally we put the elements aij with i > j in antilexicographic order, i.e. if i > k 
then u;j (i > j) is before awl (k > 1) and a,i (t > i) is before u,k. 

For the definition of the duality we shall use the approach which Sudbery invented for 
GL,(Z) [29] and which was used in [30] for CL,,&). The dual algebra UUq may be called 
the algebra of tangent vectors at the identity of GL,,(n), namely we define the pairing only 
for the monomials in the normal order (17) as follows 

V K Dobrev et al 

(Di ,  f) = ki8m06no 1 < i < n ( 1 8 4  

( ~ i ~ ,  f )  5 s,,,&~,s,~ (18b) 1 < i i j < n 

If some monomial is not in normal order then it should be brought to this order using 
commutation relations (1) and then (18) can be applied. Thus following [29] we can 
interpret formulae (18) as 

where y is a generating element of GL,,(n) and differentiation is from the right. Note also 
that from (18) it follows that 

(Y,  Id) = o  Y = Dj, Eij ,  ej. (20) 

3. Commutation relations of the dual algebra 

To, obtain the the commutation~relations between the generators Di, E i j ,  Fij we first need 
to evaluate the action of their bilinear products on the elements of GL,,(n). We shall show 
that it is enough to do this for the Chevalley-like generators D,, 1 < i < n, Ei = Ei,i+l, 

Fi Fi+l.i, 1 < i < n - 1. Then through them we shall express the rest of the generators 
E.. F , .  

111 '1' 
Using the defining relations and the second of relations (14) we obtain: 

(DiDj,  f )  = (DjDi .  f) = kikj6,,&0 1 S_ i, j < n (21) 

(22) 
(DiEj ,  f) (ki + 6 i j ) 6 m j , , + , i 6 ~ o 8 n U  = (ki + & j ) ( E j ,  f )  6' = 6j"' m0 m0 

f )  = (ki +6i.j+1)6,,,+,16~oSno = (ki + G i . j + ~ ) ( E j ,  f) 
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It is convenient to use as well as the generators Di the generators 

K = D I  + ...+ Dn H. , -  - D -  , - D. l<i<n-1. (29) 

and we shall give many results for both sets. Let us note that the generator K commutes 
with all generators D;, Ei,  Fi: 

[ K ,  Dj] = 0 [ K ,  Ej] = 0 [K, Fj] = 0 (30) 

while the generators Hi, E t ,  Fi also form a commutation subalgebra, namely instead of 
formulae (28a-c) we have 

[Hi, Hjl = 0 ( 3 1 4  

[Hj, Ej]  = cjjEj [Hi ,  Fj] = - C j j F j  (3 1b) 

( 3 1 ~ )  c . . -z&. -& .  t I  - r , I + ~  - & + i . j  1 < i, i < - 1 

u ~ , ~ .  - u - l ~ . ~ i  =A-' 2Ht - ( 3 1 4  c c  ( I t  ]U) 

where the numbers cij form the Cartan matrix of the algebra A,-I = d ( n ,  C). 
Similarly to (28) we derive the analogue of  the Serre relations: 

pFE;Ej*l - (U + u-')EiEj+lEj + (pF)-'Eji1E? = 0 

P+ = q i , i + l q i + 1 , i + 2 / ~ q i , i + ~  P; = uqi-l , i+l/qi-l . iqi . i+1. ( 3 2 ~ )  

( 3 2 4  

(37-b) pFF?F;+i - (U  + ~-')FjFi+lFi + (p')-'F;+lFf = 0 

Now we shall express the rest of the generators Eij,  Fi, through the Chevalley-like ones. 
First let us rewrite relations (32) for the '+' sign in a more suggestive way: 

u- lp iEi (EiEi+l  - P ; ' E ~ + ~ E ~ )  - u ( E ~ E ~ + ~  - P ; ~ E ~ + ~ E ~ ) E ~  = o  (33a) 

upr7'(Fj+lFj -pjFjFj+l)Fj -u-'Fi(Fj+lFj -pjFjFj+l) = 0 (33b) 

pi = qi , i+1qi+l . i+~/q i . i+2 .  (33cl 

Thus we are prompted to define generators inductively in a way similar to that used for 
one-parameter deformations (cf 19,311): 
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Thus we have two definitions for the generators Eij, Fij when li - j l  # 1 and we should 
check their consistency. The proof of this is inductive. We start with the case li - j l  = 2 
where we have the desired consistency just using (26) and (27): 

( ~ i , i + ~ ,  f) = (EiEi+l - ~ ~ ; ‘ ~ i + l ~ i ,  f) = ~ m ~ , . + a l ~ z i ~ ~ n o  

(Fi+z.i, f) = (Fi+lFi - PiFiFi+l, f) = ~ n ~ , , + ~ l ~ ~ ~ + ~ ~ m o .  

(350) 

(35b) 

Then we suppose that we have proved consistency for Eij, Fij when 1 < li - j l  < s and 
then we shall prove for E;], Fij for li - j l  = s. Namely, using this supposition and (26) 
and (27) we find that 

4. Hopf algebra structure of the dual algebra 

In this section we shall use the duality to derive the Hopf algebra structure of Uuq. We start 
with the co-products in U=*, i.e. we shall repeatedly use the first of relations (14) 

(Y,  f) = (&AY),  fl 8 fi) (37) 

for every splitting f = f~fi. Thus we derive 

Su(Di) Di 8 lu + lu 8 Di (38a) 

Su(H;) = Hi 8 lu + lu @Hi, Su(K)  = K 8 lu + lu 8 K. (38b) 

Then we try the following ansatze: 



6998 

Comparing (41) with (42) we try 

V K Dobra et 01 

then we check that (390) with this choice is consistent for all choices of fi , f2 in (37). 

find 
Analogously we proceed to obtain &i: we take f{ = ai+,,;, f2 = ( ~ 1 1 ) ~ ~  . . . (o,,)~" to 

f;fz = o~+I;~(oII)~~ . . . (o.~)" = ~~"-"+')A;~f2f;  (44) 

and thus we have 

The co-products of the rest of the generators we obtain using (34) and the co-products of 
the generators E,, f i ,  e.g. 

uzEiP; for i = j u-'FiP( for i = j 
g,jlEjPi fo r i  j& j P i F j =  { g..F.P. ' I  J I for i # j WO) Pi Ej = 

The co-unit relations in U,, are given by 

&U(Y) = 0 Y = Di, Eij, Fij, K ,  Hi (52) 

which follows easily using (15), (20) and (29): 

&u(Y) = (Y, Id) = 0. (53) 
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Finally the antipode map in U = Uzp is given by 

&(D;) = -0j (54a) 

&(Hi) = -H, y u ( K )  = - K  (54b) 

(54c) 
I &(Ej) = -EiP; ' &(&J = -E&; . 

This follows from (38), (39) and (52) with elementary application of one of the basic axioms 
of Hopf algebras 1321: 

m o (idu @ MI) o Su = i o EU (55) 

where both sides are maps U + U, m is the usual product in the algebra: m(Y @Z) = Y Z ,  
Y ,  Z E LI and i is the natural embedding of (C into U. i (c)  =~clu,  c E C. To obtain (54) 
we just apply both sides of (55) to Di, Hi, K ,  Et ,  E .  For (54c) we also use vu(?;) =?;I, 

&(e;) = e;' which follows from ( 5 4 ~ ) .  The antipode map for the rest of the generators 
Eij, Fij we obtain using (34) and (54). 

5. Drinfeld-Jimbo form of the dual algebra 

In this section we show how to transform the algebra UuQ to a Dnnfeld-Jimbo form. (It 
could be transformed also to the algebra given in [17] in terms only of the Chevalley 
generators.) We first note that if we set all parameters equal qij = U for all i, j and make 
the change 

Ei = X:uHl/2 Fi = X ~ u H g 1 2  (56) 

then the generators Hi, X i ,  1 < i < n - 1 obey the commutation rules and Serre relations 
of the standard Drinfeld-Jibo deformation Uu(sl(n, C)). 

Then we note that if qij = U for all i, j then we have Pi = ufi  = Qi. Thus we are 
prompted to try for the analogue of the transformation (56) in the following multiparametric 
case: 

(57) Ei = X:P,'/'- Fi = X;Qi 112 . 

Indeed we have 

[Hi ,  X j f l  = [Hi, EjP;'/2] = c i j q  
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where we have used (57), (43), ( 4 3 ,  (51) and 

for j = i i 1 
otherwise 

gijgji = 

next we have 

(x:)zxL, - [2J"x+x~lx+ + Xi',,(X+,Z 

= u-'gi,iii E?Ei*i - [2].Ei EiirEj + u-lgi*l,jEj*lE~ = 0 (61) 

where we have used (57). (51) the facts that gi,i*./u = p:, g;*l,i/u =~(p:)- '  and (32~) ;  

'/2 p-'/' = g!!2E.E .P- ' / zp~ ' /2  = g~' /2E .E .p - ' /2p -1 /2  
r j 1 J i  I tJ j 

X?X+= J EiPL Ej 

= g-'/2g?g-l/2~.p-1/2~,p~~'j2 11 11 J j = X+X+ I C  i < j - 1 (62) 

where we have used (57), (51), (28e) and (60). Formulae (31~). (58), (59), (61), (62) and 
the analogies of (61), (62) for the '-' sign are the defining relations of the one-parameter 
deformation U.(d(n, C)) in term of the Chevalley generators Hi, X:, i = 1.. . . , n - 1. 

Thus as a commutation algebra we have U,, G U,(sl(n, C)) @ U,(2), where Uu(2) 
is spanned by K ,  uiKlz. This splitting is also preserved by the co-unit and the antipode, cf 
(52) and (54b) for the generators Hi and K ,  while for Xi we have 

&u(X+) = E U ( E ~ ) E U ( P ~  ) - &u(x;) = &u(Fi)&u(Q;"2) = 0 ( 6 3 4  

m(X+) = y ~ ( p [ ' ~ ) y ~ ( E ; . )  = -P,?/zEiPY' = -uEiPL1/' = -EX: (63b) 

w(X;) = yU(Q;1/2)*(fi) -Q,"2Fip;' = - U - I f i Q ; ' / 2  = (63~)  

-1/2 - 0 

where we have used (51). The splitting is also preserved by the co-products of Hi, K, cf 
(38b). 

However, for the co-products of the Chevalley generators Xi we have 

su(x;') = s u ( ~ i ) s u ( ~ ; l / z )  = ( E ~ ~ P ~ + ~ ~ @ E ~ ) ( P , ~ " * @ P ~ ' / ~ )  = x:@P;/~+P;%x: 
(-544 

6u(x;) = su(fi)su(Q;l~z) = (Fi @ Q i  + lu @ F i ) ( Q y  @ 

= x; @ Qy + Qy @ x;. (64b) 

Thus, as a co-algebra U", cannot be split as above and furthermore it depends on all 
parameters. OnIy if we set qi j  = U for all i. j then Pi = ufi = Q i  and (64) become the 
standard co-products of the Chevalley generators X' of U,,(sl(n, C)). 

FmaIly, a remark is in order on the non-degeneracy of the pairing (IS) used for the 
duality. We know that if we set qij = U = 1 for all i, j then we recover the classical 
duality between GL(n,C) and U(sl(n, C)) @ U ( 2 )  with the same pairing (18). Thus the 
pairing (18) is not degenerate in the classical case. Suppose, now that it is degenerate in 
the multiparameter deformed case considered here. This would mean that there is some 
relation: 

(v,a) = 0 (65) 
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where U E U,, is some fixed-non-zero element and U E GL,,(n) is arbitrary (or a is 
fixed and U arbitrary), and furthermore this relation becomes trivial, i.e. 0 =-0, when 
q i j  = U = 1 for all i ,  j .  The latter is possible only if the element V is becoming zero itself 
in the classical limit (because of non-degeneracy). This would mean that U = xi kiui is a 
polynomial consisting of basis monomials vi with non-zero classical limit with coefficients 
ki which all vanish in the classical case. However, since (65) is valid for any a ,  this means 
that in the deformed case we have an infinite number of equations for a fiNte number of 
unknowns with at least one non-trivial solution given by the coefficients k;. This would 
mean that there are some additional relations in Ux, besides (58), (59), (61), (62) which 
relations would become trivial in the classical limit. From our analysis of the dual algebra 
it seems plausible that such unnatural relations do not exist. 
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