Duality for multiparametric quantum $\mathrm{GL}(\mathrm{n})$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 266991
(http://iopscience.iop.org/0305-4470/26/23/038)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:14

Please note that terms and conditions apply.

Duality for multiparametric quantum $G L(n)$

V K Dobrevit and Preeti Parashar§
International Centre for Theoretical Physics, PO Box 586,34100 Trieste, Italy

Received 4 May 1993

Abstract

We show that the Hopf algebra $\mathcal{U}_{u q}$ dual to the multiparameter matrix quantum group $G L_{u q}(n)$ may be realized a la Sudbery, i.e. tangent vectors at the identity. Furthermore, we give the Cartan-Weyl basis of $\mathcal{U}_{u q}$ and show that this is consistent with the duality. We show that as a commutation algebra $\mathcal{U}_{u q} \cong U_{u}(s l(n, \mathbb{C})) \otimes U_{u}(\mathcal{Z})$, where \mathcal{Z} is one-dimensional and $U_{u}(\mathcal{Z})$ is a central algebra in $\mathcal{U}_{u q}$. However, as a co-algebra $\mathcal{U}_{u q}$ cannot be split in this way and depends on all parameters.

1. Introduction

Quantum groups first appeared as quantum algebras, i.e. as one-parameter deformations of the universal enveloping algebras $U_{q}(\mathcal{G})$ of complex simple Lie algebras \mathcal{G}, in the study of the algebraic aspects of quantum integrable systems in [1-6]. Then quantum algebras related to trigonometric solutions of the quantum Yang-Baxter equation were axiomatically introduced as (pseudo) quasi-triangular Hopf algebras in [7-10]. Other approaches to quantum groups, in which the objects may be called quantum matrix groups and are Hopf algebras in duality to the quantum algebras, were developed in [11-15]. Later, the matrix quantum group approaches were pursued further, in particular finding consistent multiparametric deformations in [16-28].

In the present paper we find the dual algebra to the multiparameter matrix quantum group $G L_{u q}(n)$ which is the $(n(n-1) / 2+1)$-parameter deformation of $G L(n)$ given in [17,22]. We partially use the approach of [29] to postulate the pairings between the generating elements of the two algebras. We show that the algebra $\mathcal{U}_{u q}$ dual as a Hopf algebra to the multiparametric deformation $G L_{u q}(n)$ may be realized a la Sudbery [29]. Furthermore, we give the Cartan-Weyl basis of $\mathcal{U}_{u q}$ and show that this is consistent with Sudbery duality. The algebra $\mathcal{U}_{u q}$ contains a central Hopf algebra $U_{u}(\mathcal{Z})$, where \mathcal{Z} is onedimensional. Moreover, as a commutation algebra we have $\mathcal{U}_{u q} \cong U_{u}(s l(n, \mathbb{C})) \otimes U_{u}(\mathcal{Z})$. However, as a co-algebra $\mathcal{U}_{u q}$ cannot be split in this way and depends on all parameters.

2. Dual algebra of multiparametric deformation of $G L(n)$

In [12,13] Manin has considered a family of quantum groups, deformations of the algebra of polynomial functions on $G L(n)$, depending on $n(n-1) / 2$ parameters. Later, different

[^0]multiparameter deformations were found in [16-28]. The maximal number of parameters for $G L(n)$ is $N=n(n-1) / 2+1$ [17,22]. Following [17] we denote these N parameters by u and $q_{t j}, 1 \leqslant i<j \leqslant n$, and also for shortness by the pair u, q.

Let us consider an $n \times n$ quantum matrix M with non-commuting matrix elements $a_{i j}$, $1 \leqslant i, j \leqslant n$. The matrix quantum group $G L_{u q}(n)$ is generated by the matrix elements $a_{l j}$ with the following commutation relations [17,22]:

$$
\begin{align*}
& a_{i j} a_{i l}=p a_{i l} a_{i j} \quad \text { for } j<l \tag{1a}\\
& a_{i j} a_{k j}=q a_{k j} a_{i j} \quad \text { for } i<k \tag{1b}\\
& p a_{i l} a_{k j}=q a_{k j} a_{i l} \quad \text { for } i<k, j<l \tag{1c}\\
& u q a_{k l} a_{i j}-(u p)^{-1} a_{i j} a_{k l}=\lambda a_{i l} a_{k j} \quad \text { for } i<k, j<l \tag{1d}\\
& p=q_{j l} / u^{2} \quad q=1 / q_{i k} \quad \lambda=u-1 / u . \tag{1e}
\end{align*}
$$

Considered as a bialgebra, it has the following comultiplication $\delta_{\mathcal{A}}$ and co-unit $\varepsilon_{\mathcal{A}}$:

$$
\begin{equation*}
\delta_{\mathcal{A}}\left(a_{i j}\right)=\sum_{k=1}^{n} a_{i k} \otimes a_{k j} \quad \varepsilon_{\mathcal{A}}\left(a_{i j}\right)=\delta_{i j} \tag{2}
\end{equation*}
$$

This algebra has determinant \mathcal{D} given by [22, 17]:

$$
\begin{align*}
\mathcal{D} & =\sum_{\rho \in S_{n}} \epsilon(\rho) a_{1, \rho(1)} \ldots a_{n, \rho(n)} \\
& =\sum_{\rho \in S_{n}} \epsilon^{\prime}(\rho) a_{\rho(1), 1} \ldots a_{\rho(n), n} \tag{3}
\end{align*}
$$

where summations are over all permutations ρ of $\{1, \ldots, n\}$ and the quantum signatures are

$$
\begin{align*}
& \epsilon(\rho)=\prod_{\substack{j<k \\
\rho(j)>\rho(k)}}\left(-q_{\rho(k) \rho(j)} / u^{2}\right) \tag{4a}\\
& \epsilon^{\prime}(\rho)=\prod_{\substack{j<k \\
\rho(j)>\rho(k)}}\left(-1 / q_{\rho(k) \rho(j)}\right) . \tag{4b}
\end{align*}
$$

The determinant obeys [17,22]:

$$
\begin{equation*}
\delta_{\mathcal{A}}(\mathcal{D})=\mathcal{D} \otimes \mathcal{D} \quad \varepsilon_{\mathcal{A}}(\mathcal{D})=1 \tag{5}
\end{equation*}
$$

The determinant is almost central, i.e. it q-commutes with the elements $a_{i j}$ [22]:

$$
\begin{equation*}
a_{i k} \mathcal{D}=\frac{\prod_{j=1}^{k-1} q_{j k}^{-1} \prod_{l=k+1}^{n} q_{k l} / u^{2}}{\prod_{s=1}^{i-1} q_{s i}^{-1} \prod_{t=i+1}^{n} q_{i t} / u^{2}} \mathcal{D} a_{i k} \tag{6}
\end{equation*}
$$

Further, if $\mathcal{D} \neq 0$ one extends the algebra by an element \mathcal{D}^{-1} which obeys [17,22]:

$$
\begin{equation*}
\mathcal{D} D^{-1}=\mathcal{D}^{-1} \mathcal{D}=1_{\mathcal{A}} \tag{7}
\end{equation*}
$$

Note that for $q_{i j}=u$ for all i, j then the element \mathcal{D} is central and it is possible that $\mathcal{D}=\mathcal{D}^{-1}=1_{\mathcal{A}}$.

Next one defines the left and right quantum cofactor matrices $A_{i j}$ and $A_{i j}^{\prime}[17]$:

$$
\begin{align*}
& A_{i j}=\sum_{\rho(i)=j} \frac{\epsilon\left(\rho \circ \sigma_{i}\right)}{\epsilon\left(\sigma_{i}\right)} a_{1, \rho(1)} \ldots \widehat{a}_{a_{j}} \ldots a_{n, \rho(n)} \tag{8a}\\
& A_{i j}^{\prime}=\sum_{\rho(j)=i} \frac{\epsilon\left(\rho \circ \sigma_{i}^{\prime}\right)}{\epsilon\left(\sigma_{i}^{\prime}\right)} a_{\rho(1), 1} \ldots \widehat{a}_{i j} \ldots a_{\rho(n), n} \tag{8b}
\end{align*}
$$

where σ_{i} and σ_{j}^{\prime} denote the cyclic permutations:

$$
\begin{equation*}
\sigma_{i}=\{i, \ldots, 1\} \quad \sigma_{j}^{\prime}=\{j, \ldots, n\} \tag{9}
\end{equation*}
$$

and the notation \hat{x} indicates that x is to be omitted. Now one can show that [22, 17]:

$$
\begin{equation*}
\sum_{j} a_{i j} A_{k j}=\sum_{j} A_{j i}^{\prime} a_{j k}=\mathrm{d}_{i k} \mathcal{D} \tag{10}
\end{equation*}
$$

and obtain the left and right inverse [22,17]:

$$
\begin{equation*}
M^{-1}=\mathcal{D}^{-1} A^{\prime}=A \mathcal{D}^{-1} \tag{11}
\end{equation*}
$$

Thus, one can introduce the antipode in $G L_{u q}(n)$ [17,22]:

$$
\begin{equation*}
\gamma_{\mathcal{A}}\left(a_{i j}\right)=\mathcal{D}^{-1} A_{j i}^{\prime}=A_{j i} \mathcal{D}^{-1} . \tag{12}
\end{equation*}
$$

We are looking for the dual algebra to $G L_{u q}(n)$. Let us recall that two bialgebras \mathcal{U}, \mathcal{A} are said to be in duality if there exists a doubly non-degenerate bilinear form

$$
\begin{equation*}
\langle,\rangle: \mathcal{U} \times \mathcal{A} \rightarrow \mathbb{C} \quad\langle,\rangle:(u, a) \mapsto\langle u, a\rangle \quad u \in \mathcal{U}, a \in \mathcal{A} \tag{13}
\end{equation*}
$$

such that, for $u, v \in \mathcal{U}, a, b \in \mathcal{A}$,

$$
\begin{align*}
& \langle u, a b\rangle=\left\langle\delta_{\mathcal{U}}(u), a \otimes b\right\rangle \quad\langle u v, a\rangle=\left\langle u \otimes v, \delta_{\mathcal{A}}(a)\right\rangle \tag{14}\\
& \left\langle 1_{\mathcal{U}}, a\right\rangle=\varepsilon_{\mathcal{A}}(a) \quad\left\langle u, 1_{\mathcal{A}}\right\rangle=\varepsilon_{\mathcal{U}}(u) \tag{15}
\end{align*}
$$

Two Hopf algebras \mathcal{U}, \mathcal{A} are said to be in duality if they are in duality as bialgebras and if

$$
\begin{equation*}
\langle\gamma u(u), a\rangle=\left\langle u, \gamma_{\mathcal{A}}(a)\right\rangle . \tag{16}
\end{equation*}
$$

It is enough to define the pairing (13) between the generating elements of the two algebras. The pairing between any other elements of \mathcal{U}, \mathcal{A} then follows from relations (14), (15) and the standard bilinear form inherited by the tensor product.

However, we do not know the dual algebra completely. Then we need to know the action of the algebra $\mathcal{U}_{u q}$ dual to $G L_{u q}(n)$ on every element of $G L_{u q}(n)$. The basis of $G L_{u q}(n)$ consists of monomials
where $k_{i}, m_{i j}, n_{i j} \in \mathbb{Z}_{+}$and we have used the so-called normal ordering of the elements $a_{i j}$. Namely, we first put the elements $a_{i i}$; then we put the elements $a_{i j}$ with $i<j$ in lexicographic order, i.e. if $i<k$ then $a_{i j}(i<j)$ is before $a_{k l}(k<l)$ and $a_{t i}(t<i)$ is before $a_{t k}$; finally we put the elements $a_{i j}$ with $i>j$ in antilexicographic order, i.e. if $i>k$ then $a_{i j}(i>j)$ is before $a_{k l}(k>l)$ and $a_{t i}(t>i)$ is before $a_{t k}$.

For the definition of the duality we shall use the approach which Sudbery invented for $G L_{q}(2)$ [29] and which was used in [30] for $G L_{p, q}(2)$. The dual algebra $\mathcal{U}_{u q}$ may be called the algebra of tangent vectors at the identity of $G L_{u q}(n)$, namely we define the pairing only for the monomials in the normal order (17) as follows

$$
\begin{array}{lc}
\left\langle D_{i}, f\right\rangle \equiv k_{i} \delta_{m 0} \delta_{n 0} & 1 \leqslant i \leqslant n \\
\left\langle E_{i j}, f\right\rangle \equiv \delta_{m i 1} \delta_{m 0}^{i j} \delta_{n 0} & 1 \leqslant i<j \leqslant n \\
\left\langle F_{i j}, f\right\rangle \equiv \delta_{n_{i j} 1} \delta_{m 0} \delta_{n 0}^{i j} & 1 \leqslant j<i \leqslant n \\
\left\langle l_{u}, f\right\rangle \equiv \delta_{m 0} \delta_{n 0} \\
\delta_{m 0}=\prod_{1 \leqslant j<k \leqslant n} \delta_{m_{j k 0} 0} \delta_{n 0}=\prod_{1 \leqslant k<j \leqslant n} \delta_{n j k 0} \\
\delta_{m 0}^{i j}=\prod_{\substack{1 \leqslant k<l \leqslant n \\
(k, l) \neq(i, j)}} \delta_{m k 0} & \delta_{n 0}^{i j}=\prod_{\substack{1 \leqslant l<k \leqslant n \\
(k, l) \neq(i, j)}} \delta_{n k 0} 0 . \tag{18f}
\end{array}
$$

If some monomial is not in normal order then it should be brought to this order using commutation relations (1) and then (18) can be applied. Thus following [29] we can interpret formulae (18) as

$$
\begin{equation*}
\langle Y, f\rangle \equiv \varepsilon_{\mathcal{A}}\left(\frac{\partial f}{\partial y}\right) \tag{19}
\end{equation*}
$$

where y is a generating element of $G L_{u q}(n)$ and differentiation is from the right. Note also that from (18) it follows that

$$
\begin{equation*}
\left\langle Y, 1_{\mathcal{A}}\right\rangle=0 \quad Y=D_{i}, E_{i j}, F_{i j} \tag{20}
\end{equation*}
$$

3. Commutation relations of the dual algebra

To obtain the the commutation relations between the generators $D_{i}, E_{i j}, F_{i j}$ we first need to evaluate the action of their bilinear products on the elements of $G L_{u q}(n)$. We shall show that it is enough to do this for the Chevalley-like generators $D_{i}, I \leqslant i \leqslant n, E_{i} \equiv E_{i, i+1}$, $F_{i} \equiv F_{i+1, i}, 1 \leqslant i \leqslant n-1$. Then through them we shall express the rest of the generators $E_{i j}, F_{i j}$.

Using the defining relations and the second of relations (14) we obtain:

$$
\begin{align*}
& \left\langle D_{i} D_{j}, f\right\rangle=\left\langle D_{j} D_{i}, f\right\rangle=k_{i} k_{j} \delta_{m 0} \delta_{n 0} \quad 1 \leqslant i, j \leqslant n \tag{21}\\
& \left\langle D_{i} E_{j}, f\right\rangle=\left(k_{i}+\delta_{i j}\right) \delta_{m, j+1} \delta_{m 0}^{j} \delta_{n 0}=\left(k_{i}+\delta_{i j}\right)\left\langle E_{j}, f\right\rangle \quad \delta_{m 0}^{j}=\delta_{m 0}^{j, j+1} \\
& \left\langle E_{j} D_{i}, f\right\rangle=\left(k_{i}+\delta_{i, j+1}\right) \delta_{m_{j, j+1}} \delta_{m 0}^{j} \delta_{n 0}=\left(k_{i}+\delta_{i, j+1}\right)\left\langle E_{j}, f\right\rangle \tag{22}
\end{align*}
$$

$$
\begin{align*}
& \left\langle D_{i} F_{j}, f\right\rangle=\left(k_{i}+\delta_{i, j+1}\right) \delta_{n_{j+1,1}} \delta_{m 0} \delta_{n 0}^{j}=\left(k_{i}+\delta_{i, j+1}\right)\left\langle F_{j}, f\right\rangle \quad \delta_{n 0}^{j}=\delta_{n 0}^{j+1, j} \\
& \left\langle F_{j} D_{i}, f\right\rangle=\left(k_{i}+\delta_{i j}\right) \delta_{n j+1, j} \delta_{m 0} \delta_{n 0}^{j}=\left(k_{i}+\delta_{i j}\right)\left\langle F_{j}, f\right\rangle \tag{23}\\
& \left\langle E_{i} F_{i}, f\right\rangle=u^{-2 k_{i+1}} \frac{u^{2 k_{i}}-1}{u^{2}-1} \delta_{m 0} \delta_{n 0}+q_{i, i+1}^{-1} \delta_{m_{i, i+1}} \delta_{n_{l+1,1}} \delta_{m 0}^{i} \delta_{n 0}^{i} \\
& \left\langle F_{i} E_{i}, f\right\rangle=\frac{u^{-2 k_{i+1}}-1}{u^{-2}-1} \delta_{m 0} \delta_{n 0}+u^{2} q_{i, i+1}^{-1} \delta_{m_{i, i+1}} \delta_{n_{i+1,1}} \delta_{m 0}^{i} \delta_{n 0}^{i} \tag{24}\\
& \left\langle E_{v} F_{j}, f\right\rangle=e_{i j} \delta_{m_{i, l+1} 1} \delta_{n_{j+1, l}} \delta_{m 0}^{i} \delta_{n 0}^{j} \quad i \neq j \\
& e_{i j}= \begin{cases}q_{i+1, j+1} / q_{i, j+1} & \text { for } i<j \\
u^{2} / q_{i, i+1} & \text { for } i=j+1 \\
q_{j+1, i} / q_{j+1, i+1} & \text { for } i>j+1\end{cases} \\
& \left\langle F_{j} E_{i}, f\right\rangle=f_{i j} \delta_{m_{l i+1}} \delta_{n j+1, j} \delta_{m 0}^{i} \delta_{n 0}^{j} \quad i \neq j \tag{25}\\
& f_{i j}= \begin{cases}q_{i+1, j} / q_{i j} & \text { for } i<j-1 \\
1 / q_{i, i+1} & \text { for } i=j-1 \\
q_{j i} / q_{j, i+1} & \text { for } i>j\end{cases} \\
& \left\langle E_{i} E_{i+1}, f\right\rangle=q_{i, i+1}^{-1} \delta_{m_{i, i+1}} \delta_{m_{i+1, i+21}} \delta_{m 0}^{i, i+1} \delta_{n 0}+\delta_{m_{i, i+2}} \delta_{m 0}^{i, i+2} \delta_{n 0} \\
& \left\langle E_{i} E_{j}, f\right\rangle=e_{i j}^{i} \delta_{m_{i,+1} 1} \delta_{m_{j, f+1}} \delta_{m 0}^{i j} \delta_{n 0} \quad i \neq j-1 \\
& e_{i j}^{\prime}= \begin{cases}q_{i+1, j} / q_{i j} & \text { for } i<j-1 \\
\left(1+u^{2}\right) / q_{i, i+1} & \text { for } i=j \\
q_{j+1, i+1} / q_{j, i+1} & \text { for } i>j\end{cases} \tag{26}\\
& \left\langle F_{i+1} F_{i}, f\right\rangle=q_{i+1, i+2} \delta_{n_{i+1, i}} \delta_{n_{i+2, i+1}} \delta_{n 0}^{i, i+1} \delta_{m 0}+\delta_{n_{l+2, i}} \delta_{n 0}^{i+2, i} \delta_{m 0} \\
& \left\langle F_{i} F_{j}, f\right\rangle=f_{i j}^{\prime} \delta_{n_{i+1, i}} \delta_{n_{j+1, i}} 1 \delta_{n 0}^{i j} \delta_{m 0}, i \neq j+1 \\
& f_{i j}^{\prime}= \begin{cases}q_{i, j+1} / q_{i j} & \text { for } i<j \\
\left(1+u^{-2}\right) q_{i, i+1} & \text { for } i=j \\
q_{j+1, i+1} / q_{j+1, i} & \text { for } i>j+1 .\end{cases} \tag{27}
\end{align*}
$$

Thus we have the following commutation relations:

$$
\begin{align*}
& {\left[D_{i}, D_{j}\right]=0} \tag{28a}\\
& {\left[D_{i}, E_{j}\right]=\left(\delta_{i j}-\delta_{i, j+1}\right) E_{j} \quad\left[D_{i}, F_{j}\right]=\left(-\delta_{i j}+\delta_{i, j+1}\right) F_{j}} \tag{28b}\\
& u E_{i} F_{i}-u^{-1} F_{i} E_{i}=\lambda^{-1}\left(u^{2\left(D_{i}-D_{i+1}\right)}-1_{u}\right) \tag{28c}\\
& E_{i} F_{j}=g_{i j} F_{j} E_{\mathrm{t}} \quad i \neq j \tag{28d}\\
& g_{i j}=e_{i j} / f_{i j}= \begin{cases}q_{i j} q_{i+1, j+1} / q_{i, j+1} q_{i+1, j} & \text { for } i<j-1 \\
q_{i, i+1} q_{i+1, i+2} / q_{i, i+2} & \text { for } i=j-1 \\
u^{2} q_{i-1, i+1} / q_{i-1, i} q_{i, i+1} & \text { for } i=j+1 \\
q_{j, i+1} q_{j+1, i} / q_{j i} q_{j+1, i+1} & \text { for } i>j+1\end{cases} \tag{28e}
\end{align*}
$$

$$
\begin{array}{lc}
E_{i} E_{j}=g_{i j}^{-1} E_{j} E_{i} & i<j-1 \\
F_{i} F_{j}=g_{t j}^{-1} F_{j} F_{i} & i>j+1 \tag{28g}
\end{array}
$$

It is convenient to use as well as the generators D_{i} the generators

$$
\begin{equation*}
K=D_{1}+\cdots+D_{n} \quad H_{i}=D_{i}-D_{i+1} \quad 1 \leqslant i \leqslant n-1 . \tag{29}
\end{equation*}
$$

and we shall give many results for both sets. Let us note that the generator K commutes with all generators D_{i}, E_{i}, F_{i} :

$$
\begin{equation*}
\left[K, D_{i}\right]=0 \quad\left[K, E_{i}\right]=0 \quad\left[K, F_{i}\right]=0 \tag{30}
\end{equation*}
$$

while the generators H_{i}, E_{i}, F_{i} also form a commutation subalgebra, namely instead of formulae ($28 a-c$) we have

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0} \tag{31a}\\
& {\left[H_{i}, E_{j}\right]=c_{i j} E_{j} \quad\left[H_{i}, F_{j}\right]=-c_{i j} F_{j}} \tag{31b}\\
& c_{i j}=2 \delta_{i j}-\delta_{i, j+1}-\delta_{i+1, j} \quad 1 \leqslant i, j \leqslant n-1 \tag{31c}\\
& u E_{i} F_{i}-u^{-1} F_{i} E_{i}=\lambda^{-1}\left(u^{2 H_{i}}-l_{u}\right) \tag{31d}
\end{align*}
$$

where the numbers $c_{i j}$ form the Cartan matrix of the algebra $A_{n-1}=s l(n, \mathbb{C})$.
Similarly to (28) we derive the analogue of the Serre relations:

$$
\begin{align*}
& p_{i}^{ \pm} E_{i}^{2} E_{i \pm 1}-\left(u+u^{-1}\right) E_{i} E_{i \pm 1} E_{i}+\left(p_{i}^{ \pm}\right)^{-1} E_{i \pm 1} E_{i}^{2}=0 \tag{32a}\\
& p_{i}^{ \pm} F_{i}^{2} F_{i \pm 1}-\left(u+u^{-1}\right) F_{i} F_{i \pm 1} F_{i}+\left(p_{i}^{ \pm}\right)^{-1} F_{i \pm 1} F_{i}^{2}=0 \tag{32b}\\
& p_{i}^{+}=q_{i, i+1} q_{i+1, i+2} / u q_{i, i+2} \quad p_{i}^{-}=u q_{i-1, i+1} / q_{i-1, i} q_{i, i+1} . \tag{32c}
\end{align*}
$$

Now we shall express the rest of the generators $E_{i j}, F_{i j}$ through the Chevalley-like ones. First let us rewrite relations (32) for the ' + ' sign in a more suggestive way:

$$
\begin{align*}
& u^{-1} p_{i} E_{i}\left(E_{i} E_{i+1}-p_{i}^{-1} E_{i+1} E_{i}\right)-u\left(E_{i} E_{i+1}-p_{i}^{-1} E_{i+1} E_{i}\right) E_{i}=0 \tag{33a}\\
& u p_{i}^{-1}\left(F_{i+1} F_{i}-p_{i} F_{i} F_{i+1}\right) F_{i}-u^{-1} F_{i}\left(F_{i+1} F_{i}-p_{i} F_{i} F_{i+1}\right)=0 \tag{33b}\\
& p_{i}=q_{i, i+1} q_{i+1, i+2} / q_{i, i+2} \tag{33c}
\end{align*}
$$

Thus we are prompted to define generators inductively in a way similar to that used for one-parameter deformations (cf $[9,31]$):

$$
\begin{array}{ll}
E_{i j} \equiv E_{i} E_{i+1, j}-p_{i j}^{-1} E_{i+1, j} E_{i} & i<j \\
F_{i j} \equiv F_{i, j+1} F_{j}-p_{i j} F_{j} F_{i, j+1} & i>j \tag{34}\\
p_{i j}=q_{i, i+1} q_{i+1, j} / q_{i j} . &
\end{array}
$$

Thus we have two definitions for the generators $E_{i j}, F_{i j}$ when $|i-j| \neq 1$ and we should check their consistency. The proof of this is inductive. We start with the case $|i-j|=2$ where we have the desired consistency just using (26) and (27):

$$
\begin{align*}
& \left\langle E_{i, i+2}, f\right\rangle=\left\langle E_{i} E_{i+1}-p_{i}^{-1} E_{i+1} E_{i}, f\right\rangle=\delta_{m_{i, l+2}} \delta_{m 0}^{i, i+2} \delta_{n 0} \tag{35a}\\
& \left\langle F_{i+2, i}, f\right\rangle=\left\langle F_{i+1} F_{i}-p_{i} F_{i} F_{i+1}, f\right\rangle=\delta_{n_{i, l+2} 1} \delta_{n 0}^{i, i+2} \delta_{m 0} \tag{35b}
\end{align*}
$$

Then we suppose that we have proved consistency for $E_{i j}, F_{i j}$ when $1<|i-j|<s$ and then we shall prove for $E_{i j}, F_{i j}$ for $|i-j|=s$. Namely, using this supposition and (26) and (27) we find that

$$
\begin{align*}
& \left\langle E_{i j}, f\right\rangle=\left\langle E_{i} E_{i+1, j}-p_{i j}^{-1} E_{i+1, j} E_{i}, f\right\rangle=\delta_{m_{i j}} \delta_{m 0}^{i j} \delta_{n 0} \tag{36a}\\
& \left\langle F_{i j}, f\right\rangle=\left\langle F_{i, j+1} F_{j}-p_{i j} F_{j} F_{i, j+1}, f\right\rangle=\delta_{n_{i j}} \delta_{n 0}^{i j} \delta_{m 0} \tag{36b}
\end{align*}
$$

For (36) we have used analogies of (26) and (27) for $E_{i} E_{i+1, j}, E_{i+1, j} E_{i}, F_{i, j+1} F_{j}, F_{j} F_{i, j+1}$.

4. Hopf algebra structure of the dual algebra

In this section we shall use the duality to derive the Hopf algebra structure of $\mathcal{U}_{u q}$. We start with the co-products in $\mathcal{U}_{u q}$, i.e. we shall repeatedly use the first of relations (14)

$$
\begin{equation*}
\langle Y, f\rangle=\left\langle\delta_{u}(Y), f_{1} \otimes f_{2}\right\rangle \tag{37}
\end{equation*}
$$

for every splitting $f=f_{1} f_{2}$. Thus we derive

$$
\begin{align*}
& \delta_{\mathcal{U}}\left(D_{i}\right)=D_{i} \otimes 1_{\mathcal{U}}+1_{\mathcal{U}} \otimes D_{i} \tag{38a}\\
& \delta_{\mathcal{U}}\left(H_{i}\right)=H_{i} \otimes 1_{\mathcal{U}}+1_{\mathcal{U}} \otimes H_{i}, \delta_{\mathcal{U}}(K)=K \otimes 1_{\mathcal{U}}+1_{\mathcal{U}} \otimes K \tag{38b}
\end{align*}
$$

Then we try the following ansätze:

$$
\begin{align*}
& \delta_{\mathcal{U}}\left(E_{i}\right)=E_{i} \otimes \mathcal{P}_{i}+I_{\mathcal{U}} \otimes E_{i} \tag{39a}\\
& \delta_{\mathcal{U}}\left(F_{i}\right)=F_{i} \otimes \mathcal{Q}_{i}+I_{\mathcal{U}} \otimes F_{i} \tag{39b}
\end{align*}
$$

We take in (37) $f_{1}=a_{i, i+1}, f_{2}=\left(a_{11}\right)^{k_{1}} \ldots\left(a_{n n}\right)^{k_{n}}$ and using

$$
\begin{align*}
& f_{1} f_{2}=a_{i, i+1}\left(a_{11}\right)^{k_{1}} \ldots\left(a_{n n}\right)^{k_{n}}=A_{i}\left(a_{11}\right)^{k_{1}} \ldots\left(a_{n n}\right)^{k_{n}} a_{i, i+1}=A_{i} f_{2} f_{1} \tag{40a}\\
& A_{i}=\left(\prod_{s=1}^{i-1}\left(\frac{q_{s i}}{q_{s, i+1}}\right)^{k_{s}}\right)\left(\frac{u^{2}}{q_{i, i+1}}\right)^{k_{i}}\left(\frac{1}{q_{i, i+1}}\right)^{k_{i+1}}\left(\prod_{t=i+2}^{n}\left(\frac{q_{i+1, t}}{q_{i t}}\right)^{k_{t}}\right) \tag{40b}
\end{align*}
$$

we obtain, on the one hand,

$$
\begin{equation*}
\left(E_{i}, f_{1} f_{2}\right\rangle=A_{i}\left\langle E_{i}, f_{2} f_{1}\right\rangle=A_{i} \tag{41}
\end{equation*}
$$

while, on the other hand, using the ansatz (39a) we have

$$
\begin{equation*}
\left\langle E_{i}, f_{1} f_{2}\right\rangle=\left\langle E_{i}, f_{1}\right\rangle\left\langle\mathcal{P}_{1}, f_{2}\right\rangle=\left\langle\mathcal{P}_{i}, f_{2}\right\rangle \tag{42}
\end{equation*}
$$

Comparing (41) with (42) we try

$$
\begin{equation*}
\mathcal{P}_{i}=\left(\prod_{s=1}^{i-1}\left(\frac{q_{s i}}{q_{s, i+1}}\right)^{D_{s}}\right)\left(\frac{u^{2}}{q_{i, i+1}}\right)^{D_{i}}\left(\frac{1}{q_{i, i+1}}\right)^{D_{i+1}}\left(\prod_{t=i+2}^{n}\left(\frac{q_{i+1, t}}{q_{i t}}\right)^{D_{i}}\right) \tag{43}
\end{equation*}
$$

then we check that (39a) with this choice is consistent for all choices of f_{1}, f_{2} in (37).
Analogously we proceed to obtain \mathcal{Q}_{i} : we take $f_{1}^{\prime}=a_{i+1, i}, f_{2}=\left(a_{11}\right)^{k_{1}} \ldots\left(a_{n n}\right)^{k_{n}}$ to find

$$
\begin{equation*}
f_{1}^{\prime} f_{2}=a_{i+1, i}\left(a_{11}\right)^{k_{1}} \ldots\left(a_{n n}\right)^{k_{n}}=u^{2\left(k_{i}-k_{2+1}\right)} A_{i}^{-1} f_{2} f_{1}^{\prime} \tag{44}
\end{equation*}
$$

and thus we have
$\mathcal{Q}_{i}=\left(\prod_{s=1}^{i-1}\left(\frac{q_{s, i+1}}{q_{s i}}\right)^{D_{s}}\right)\left(q_{i, i+1}\right)^{D_{i}}\left(\frac{q_{i, i+1}}{u^{2}}\right)^{D_{i+1}}\left(\prod_{t=i+2}^{n}\left(\frac{q_{i t}}{q_{i+1, t}}\right)^{D_{t}}\right)=u^{2 H_{i}} \mathcal{P}_{i}^{-1}$.
The co-products of the rest of the generators we obtain using (34) and the co-products of the generators E_{i}, F_{i}, e.g.
$\delta_{\mathcal{U}}\left(E_{i, i+2}\right)=E_{i, i+2} \otimes \mathcal{P}_{i, i+2}+1_{\mathcal{U}} \otimes E_{i, i+2}+(\lambda / u) E_{i+1} \otimes E_{i} \mathcal{P}_{i+1}$
$\mathcal{P}_{i, i+2}=\mathcal{P}_{i} \mathcal{P}_{l+1}=\left(\prod_{s=1}^{i-1}\left(\frac{q_{s i}}{q_{s, i+2}}\right)^{D_{s}}\right)\left(\frac{u^{2}}{q_{i, l+2}}\right)^{D_{l}}\left(\frac{u^{2}}{q_{i, i+1} q_{i+1, i+2}}\right)^{D_{l+1}}$
$\times\left(\frac{1}{q_{i, i+2}}\right)^{D_{i+2}}\left(\prod_{t=i+3}^{n}\left(\frac{q_{i+2, t}}{q_{i t}}\right)^{D_{t}}\right)$
$\delta_{\mathcal{U}}\left(F_{i+2, i}\right)=F_{i+2, i} \otimes \mathcal{Q}_{i+2, i}+1_{U} \otimes F_{i+2, i}-u \lambda F_{i} \otimes F_{i+1} \mathcal{Q}_{i}$
$\mathcal{Q}_{i+2, i}=\mathcal{Q}_{i} \mathcal{Q}_{i+1}=u^{2\left(H_{i}+H_{i+1}\right)}\left(\mathcal{P}_{i} \mathcal{P}_{i+1}\right)^{-1}=u^{2 H_{l i+2}} \mathcal{P}_{i, i+2}^{-1}$
$H_{i, i+2} \equiv H_{i}+H_{i+1}=D_{i}-D_{i+2}$
where we have used
$\mathcal{P}_{i} E_{j}=\left\{\begin{array}{ll}u^{2} E_{i} \mathcal{P}_{i} & \text { for } i=j \\ g_{i j}^{-1} E_{j} \mathcal{P}_{i} & \text { for } i \neq j\end{array} \quad \mathcal{P}_{i} F_{j}= \begin{cases}u^{-2} F_{i} \mathcal{P}_{i} & \text { for } i=j \\ g_{i j} F_{j} \mathcal{P}_{i} & \text { for } i \neq j\end{cases}\right.$
$\mathcal{Q}_{i} E_{j}=\left\{\begin{array}{ll}u^{2} E_{i} \mathcal{Q}_{i} & \text { for } i=j \\ u^{2 c_{i j}} g_{i j} E_{j} \mathcal{Q}_{i} & \text { for } i \neq j\end{array} \quad Q_{i} F_{j}= \begin{cases}u^{-2} F_{i} \mathcal{Q}_{i} & \text { for } i=j \\ u^{-2 c_{i l}} g_{i j}^{-1} F_{j} \mathcal{P}_{i} & \text { for } i \neq j\end{cases}\right.$

The co-unit relations in $\mathcal{U}_{u q}$ are given by

$$
\begin{equation*}
\varepsilon_{u}(Y)=0 \quad Y=D_{i}, E_{i j}, F_{i j}, K, H_{i} \tag{52}
\end{equation*}
$$

which follows easily using (15), (20) and (29):

$$
\begin{equation*}
\varepsilon_{\mathcal{U}}(Y)=\left\langle Y, 1_{\mathcal{A}}\right\rangle=0 \tag{53}
\end{equation*}
$$

Finally the antipode map in $\mathcal{U}=\mathcal{U}_{u q}$ is given by

$$
\begin{align*}
& \gamma_{u}\left(D_{i}\right)=-D_{i} \tag{54a}\\
& \gamma_{u}\left(H_{i}\right)=-H_{i} \tag{54b}\\
& \gamma_{u}\left(E_{i}\right)=-E_{i} \mathcal{P}_{i}^{-1} \quad \gamma_{u}(K)=-K \tag{54c}\\
& \gamma_{i}\left(F_{i}\right)=-F_{i} \mathcal{Q}_{i}^{-1} .
\end{align*}
$$

This follows from (38), (39) and (52) with elementary application of one of the basic axioms of Hopf algebras [32]:

$$
\begin{equation*}
m \circ\left(\mathrm{id}_{\mathcal{U}} \otimes \gamma \mathcal{U}\right) \circ \delta_{\mathcal{U}}=i \circ \varepsilon_{\mathcal{U}} \tag{55}
\end{equation*}
$$

where both sides are maps $\mathcal{U} \rightarrow \mathcal{U}, m$ is the usual product in the algebra: $m(Y \otimes Z)=Y Z$, $Y, Z \in \mathcal{U}$ and i is the natural embedding of \mathbb{C} into $\mathcal{U}: i(c)=c \mathcal{I}_{\mathcal{U}}, c \in \mathbb{C}$. To obtain (54) we just apply both sides of (55) to $D_{i}, H_{i}, K, E_{i}, F_{i}$. For (54c) we also use $\gamma_{u}\left(\mathcal{P}_{i}\right)=\mathcal{P}_{i}^{-1}$, $\gamma_{\mathcal{U}}\left(Q_{i}\right)=\mathcal{Q}_{i}^{-1}$ which follows from (54a). The antipode map for the rest of the generators $E_{i j}, F_{i j}$ we obtain using (34) and (54).

5. Drinfeld-Jimbo form of the dual algebra

In this section we show how to transform the algebra $\mathcal{U}_{u q}$ to a Drinfeld-Jimbo form. (It could be transformed also to the algebra given in [17] in terms only of the Chevalley generators.) We first note that if we set all parameters equal $q_{i j}=u$ for all i, j and make the change

$$
\begin{equation*}
E_{i}=X_{i}^{+} u^{H_{i} / 2} \quad F_{i}=X_{i}^{-} u^{H_{i} / 2} \tag{56}
\end{equation*}
$$

then the generators $H_{i}, X_{i}^{ \pm}, 1 \leqslant i \leqslant n-1$ obey the commutation rules and Serre relations of the standard Drinfeld-Jimbo deformation $U_{u}(s l(n, \mathbb{C}))$.

Then we note that if $q_{i j}=u$ for all i, j then we have $\mathcal{P}_{i}=u^{H_{i}}=\mathcal{Q}_{i}$. Thus we are prompted to try for the analogue of the transformation (56) in the following multiparametric case:

$$
\begin{equation*}
E_{i}=X_{i}^{+} \mathcal{P}_{i}^{1 / 2} \quad F_{i}=X_{i}^{-} \mathcal{Q}_{i}^{1 / 2} \tag{57}
\end{equation*}
$$

Indeed we have

$$
\begin{align*}
& {\left[H_{i}, X_{j}^{+}\right]=\left[H_{i}, E_{j} \mathcal{P}_{i}^{-1 / 2}\right]=c_{i j} X_{j}^{+}} \tag{58a}\\
& {\left[H_{i}, X_{j}^{-}\right]=\left[H_{i}, F_{j} \mathcal{Q}_{i}^{-1 / 2}\right]=-c_{i j} X_{j}^{-}} \tag{58b}\\
& {\left[X_{i}^{+}, X_{i}^{-}\right]=\left[E_{i} \mathcal{P}_{i}^{-1 / 2}, F_{i} \mathcal{Q}_{i}^{-1 / 2}\right]=\left(u E_{i} F_{i}-u^{-1} F_{i} E_{i}\right) u^{-H_{i}}=\lambda^{-1}\left(u^{H_{i}}-u^{-H_{i}}\right) \equiv\left[H_{i}\right]_{u}} \tag{58c}
\end{align*}
$$

where we have used (57), (31b-d), (43), (45) and (51):

$$
\begin{align*}
{\left[X_{i}^{+}, X_{j}^{-}\right]=} & {\left[E_{i} \mathcal{P}_{i}^{-1 / 2}, F_{j} \mathcal{Q}_{j}^{-1 / 2}\right]=E_{i} F_{j}\left(\frac{\mathcal{P}_{j}}{g_{i j} \mathcal{P}_{i}}\right)^{1 / 2} u^{-H_{j}}-F_{j} E_{i}\left(\frac{\mathcal{P}_{j}}{g_{j i} \mathcal{P}_{i}}\right)^{1 / 2} u^{-H_{j}} u^{\delta_{j, 1 \pm 1}} } \\
& =F_{j} E_{i}\left(\frac{\mathcal{P}_{j}}{g_{j i} \mathcal{P}_{i}}\right)^{1 / 2} u^{-H_{j}}\left(g_{i j}^{1 / 2} g_{j i}^{1 / 2}-u^{\delta_{j, 1+1}}\right)=0 \quad \text { for } i \neq j \tag{59}
\end{align*}
$$

where we have used (57), (43), (45), (51) and

$$
g_{i j} g_{j i}= \begin{cases}u^{2} & \text { for } j=i \pm 1 \tag{60}\\ 1 & \text { otherwise }\end{cases}
$$

next we have

$$
\begin{align*}
\left(X_{i}^{+}\right)^{2} X_{i \pm 1}^{+} & -[2]_{u} X_{i}^{+} X_{i \pm 1}^{+} X_{i}^{+}+X_{i \pm 1}^{+}\left(X_{i}^{+}\right)^{2} \\
& =u^{-1} g_{i, i \pm 1} E_{i}^{2} E_{i \pm 1}-[2] u E_{i} E_{i \pm 1} E_{i}+u^{-1} g_{i \pm 1, i} E_{i \pm 1} E_{i}^{2}=0 \tag{61}
\end{align*}
$$

where we have used (57), (51) the facts that $g_{i, i \pm 1} / u=p_{i}^{ \pm}, g_{i \pm 1, i} / u=\left(p_{i}^{ \pm}\right)^{-1}$ and (32a);

$$
\begin{gather*}
X_{i}^{+} X_{j}^{+}=E_{i} \mathcal{P}_{i}^{-1 / 2} E_{j} \mathcal{P}_{j}^{-1 / 2}=g_{i j}^{1 / 2} E_{i} E_{j} \mathcal{P}_{i}^{-1 / 2} \mathcal{P}_{j}^{-1 / 2}=g_{i j}^{-1 / 2} E_{j} E_{i} \mathcal{P}_{i}^{-1 / 2} \mathcal{P}_{j}^{-1 / 2} \\
=g_{i j}^{-1 / 2} g_{j i}^{-1 / 2} E_{j} \mathcal{P}_{j}^{-1 / 2} E_{i} \mathcal{P}_{i}^{-1 / 2}=X_{j}^{+} X_{i}^{+} \quad i<j-1 \tag{62}
\end{gather*}
$$

where we have used (57), (51), (28e) and (60). Formulae (31a), (58), (59), (61), (62) and the analogies of (61), (62) for the ' - ' sign are the defining relations of the one-parameter deformation $U_{u}(s t(n, \mathbb{C}))$ in term of the Chevalley generators $H_{i}, X_{i}^{ \pm}, i=1, \ldots, n-1$.

Thus as a commutation algebra we have $\mathcal{U}_{u q} \cong U_{u}(s l(n, \mathbb{C})) \otimes U_{u}(\mathcal{Z})$, where $U_{u}(\mathcal{Z})$ is spanned by $K, u^{ \pm K / 2}$. This splitting is also preserved by the co-unit and the antipode, cf (52) and (54b) for the generators H_{i} and K, while for $X_{i}^{ \pm}$we have
$\varepsilon_{u}\left(X_{i}^{+}\right)=\varepsilon u\left(E_{i}\right) \varepsilon_{u}\left(\mathcal{P}_{i}^{-1 / 2}\right)=0 \quad \varepsilon_{u}\left(X_{i}^{-}\right)=\varepsilon_{u}\left(F_{i}\right) \varepsilon_{u}\left(\mathcal{Q}_{i}^{-1 / 2}\right)=0$
$\mathcal{\nu u}^{\prime}\left(X_{i}^{+}\right)=\gamma u\left(\mathcal{P}_{i}^{-1 / 2}\right) \gamma u\left(E_{i}\right)=-\mathcal{P}_{i}^{1 / 2} E_{i} \mathcal{P}_{i}^{-1}=-u E_{i} \mathcal{P}_{i}^{-1 / 2}=-u X_{i}^{+}$
$\gamma_{u}\left(X_{i}^{-}\right)=\gamma \mathcal{H}^{(}\left(\mathcal{Q}_{i}^{-1 / 2}\right) \mathcal{H}_{u}\left(F_{i}\right)=-\mathcal{Q}_{i}^{1 / 2} F_{i} \mathcal{P}_{i}^{-1}=-u^{-1} F_{i} \mathcal{Q}_{i}^{-1 / 2}=-u^{-1} X_{i}^{-}$
where we have used (51). The splitting is also preserved by the co-products of H_{i}, K, cf (38b).

However, for the co-products of the Chevalley generators $X_{i}^{ \pm}$we have
$\delta_{u}\left(X_{i}^{+}\right)=\delta_{u}\left(E_{i}\right) \delta_{u}\left(\mathcal{P}_{i}^{-1 / 2}\right)=\left(E_{i} \otimes \mathcal{P}_{i}+\mathrm{l}_{u} \otimes E_{i}\right)\left(\mathcal{P}_{i}^{-1 / 2} \otimes \mathcal{P}_{i}^{-1 / 2}\right)=X_{i}^{+} \otimes \mathcal{P}_{i}^{1 / 2}+\mathcal{P}_{i}^{-1 / 2} \otimes X_{i}^{+}$

$$
\begin{align*}
& \delta_{\mathcal{U}}\left(X_{i}^{-}\right)=\delta_{\mathcal{U}}\left(F_{i}\right) \delta_{u}\left(\mathcal{Q}_{i}^{-1 / 2}\right)=\left(F_{i} \otimes \mathcal{Q}_{i}+1 \mathcal{U} \otimes F_{i}\right)\left(\mathcal{Q}_{i}^{-1 / 2} \otimes \mathcal{Q}_{i}^{-1 / 2}\right) \tag{64a}\\
= & X_{i}^{-} \otimes \mathcal{Q}_{i}^{1 / 2}+\mathcal{Q}_{i}^{-1 / 2} \otimes X_{i}^{-} \tag{64b}
\end{align*}
$$

Thus, as a co-algebra $\mathcal{U}_{u q}$ cannot be split as above and furthermore it depends on all parameters. Only if we set $q_{i j}=u$ for all i, j then $\mathcal{P}_{i}=u^{H_{i}}=\mathcal{Q}_{i}$ and (64) become the standard co-products of the Chevalley generators $X_{i}^{ \pm}$of $U_{u}(s l(n, \mathbb{C}))$.

Finally, a remark is in order on the non-degeneracy of the pairing (18) used for the duality. We know that if we set $q_{i j}=u=1$ for all i, j then we recover the classical duality between $G L(n, \mathbb{C})$ and $U(s l(n, \mathbb{C})) \otimes U(\mathcal{Z})$ with the same pairing (18). Thus the pairing (18) is not degenerate in the classical case. Suppose, now that it is degenerate in the multiparameter deformed case considered here. This would mean that there is some relation:

$$
\begin{equation*}
\langle v, a\rangle=0 \tag{65}
\end{equation*}
$$

where $v \in \mathcal{U}_{u q}$ is some fixed non-zero element and $a \in G L_{u q}(n)$ is arbitrary (or a is fixed and v arbitrary), and furthermore this relation becomes trivial, i.e. $0=0$, when $q_{i j}=u=1$ for all i, j. The latter is possible only if the element v is becoming zero itself in the classical limit (because of non-degeneracy). This would mean that $v=\sum_{i} k_{i} v_{i}$ is a polynomial consisting of basis monomials v_{i} with non-zero classical limit with coefficients k_{i} which all vanish in the classical case. However, since (65) is valid for any a, this means that in the deformed case we have an infinite number of equations for a finite number of unknowns with at least one non-trivial solution given by the coefficients k_{i}. This would mean that there are some additional relations in $\mathcal{U}_{u q}$ besides (58), (59), (61), (62) which relations would become trivial in the classical limit. From our analysis of the dual algebra it seems plausible that such unnatural relations do not exist.

Acknowledgments

The authors would like to thank Professor Abdus Salam for the hospitality and financial support at the ICTP. VKD was partially supported by the Bulgarian National Foundation for Science, Grant $\Phi-11$. PP is grateful to K S Narain for encouragement and to CSIR (New Delhi) for financial support.

References

[1] Kulish P P and Reshetikhin N Yu 1981 Zap. Nauch. Semin. LOMI 101 101-10 (in Russian) (Engl. Transl. 1983 J. Soviet. Math. 23 2435-41)
[2] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5 393-403
[3] Kulish P P and Sklyanin E K. 1982 Lecture Notes in Physics 151 61-119
[4] Sklyanin E K 1982 Funkts. Anal. Prilozh. 16 27-34 (in Russian) (Engl. Transi. 1982 Funct. Anal. Appl. 16 263-70); 1983 Funkts. Anal. Prilozh. 17 34-48 (in Russian) (Engl. Transl. 1983 Funct. Anal. Appl. 17 274-88)
[5] Faddeev L D 1984 Integrable Models in $1+1$ Dimensional Quantum Field Theory (Les Houches Lectures, 1982) (Amsterdam: Elsevier)
[6] Sklyanin E K 1985 Usp. Mat. Nauk 40214 (in Russian)
[7] Drinfeld V G 1985 Dokl. Akad. Nauk SSSR 283 1060-4 (in Russian) (Engl. Transl. 1985 Sov. Math. Dokl. 32 254-8)
[8] Jimbo M 1985 Lett. Math. Phys. 10 63-9
[9] Jimbo M 1986 Lett. Math. Phys. 11 247-52
[10] Drinfeld V G 1987 Proc. ICM Quantum Groups (Berkeley, 1986) vol 1 (New York: Academic) pp 798-820
[11] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1987 Preprint LOMI Leningrad E-14-87; 1988 Algebraic Analysis vol 1 (New York: Academic) pp 129-39; 1989 Alg. Anal. 1 178-206 (in Russian) (Engl. Transt. 1990 Leningrad Math J. 1 193-225)
[12] Manin Yu I 1988 Quantum groups and non-commutative geometry Preprint CRM-1561 Montreal University
[13] Manin Yu I 1989 Commun. Math. Phys. 123 163-75.
[14] Woronowicz S L 1987 Commun. Math. Phys. 111 613-65; 1987 Publ. RIMS, Kyoto Univ. 23 117-81
[15] Woronowicz S L 1989 Commun. Math. Phys. 122 125-70
[16] Kulish P P 1990 Zapiski Nauch. Semin. LOMI 180 89-93
[17] Sudbery A 1990 J. Phys. A: Math. Ger. 23 L697-704
[18] Demidov E E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Prog. Theor. Phys. Suppl. 102 203-18
[19] Schirrmacher A, Wess J and Zumino B 1991 Z. Phys. C 49 317-24
[20] Ogievetsky O and Wess J 1991 Z. Phys. C 50 123-31
[21] Reshetikhin N Yu 1990 Lett. Math. Phys. 20 331-5
[22] Schirrmacher A 1991 Z. Phys. C 50 321-7
[23] Fairlie D B and Zachos C K 1991 Phys. Lett. 256B 43-9
[24] Takeuchi M 1990 Proc. Japan. Acad. 66 Series A 112-14
[25] Takeuchi M 1990 The q-bracket product and the PBW theorem for quantum enveloping algebras of classical types A_{n}, B_{n}, C_{n} and D_{n} Preprint University of Tsukuba Institute of Mathematics
[26] Ewen H, Ogievetsky O and Wess J 1991 Quantum matrices in two dimensions Preprint Max Planck Institut for Physics MPI-PAE/PTh 18/91
[27] Okado M and Yamane H 1991 Special Functions ed M Kashiwara and T Miwa (Tokyo: Springer) pp 289-93
[28] Hayashi T 1992 J. Algebra 152 146-65
[29] Sudbery A 1991 Proc. Workshop on Quantum Groups (Argonne National Laboratory, 1990) ed T Curtright, D Fairlie and C Zachos (Singapore: World Science)
[30] Dobrev V K 1992 J. Math. Phys. 33 3419-30
[31] Dobrev V K 1991 Proc. Int. Group Theory Conference (St Andrews, 1989) (London Mathematical Society Lecture Note Series 159) vol 1, ed C M Campbell and E F Robertson (Cambridge: Cambridge University Press) pp 87-104
[32] Abe E 1980 Hopf Agebras (Cambridge Tracts in Mathematics 74) (Cambridge: Cambridge University Press)

[^0]: \dagger Current address: Arnold Sommerfeld Institute for Mathematical Physics, Tech. Univ. Clausthal, Leibnizstrasse 10, 38678 Clausthal-Zellerfeld, Federal Republic of Germany.
 \ddagger Permanent address: Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria.
 § On leave from the University of Delhi, Department of Physics and Astronomy, Delhi 110007, India.

